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We present a system that generates explanations and
tutorial problems from the probabilistic information
contained in Bayesian belief networks. BANTER is a
tool for high-level interaction with any Bayesian
network whose nodes can be classified as hypotheses,
observations, and diagnostic procedures. Users need
no knowledge of Bayesian networks, onlyfamiliarity
with the particular domain and an elementary
understanding of probability. Users can query the
knowledge base, identify optimal diagnostic
procedures, and request explanations. We describe
BANTER's algorithms and illustrate its application to
an existing medical model.

INTRODUCTION

Bayesian networks have become the representation of
choice for building decision-making systems in
domains characterized by uncertainty, and have been
applied to several medical domains [1-5]. The
models currently available and under development
provide a wealth of detailed knowledge that can be
used for educational purposes as well as clinical
decision support. Unfortunately, the information
contained in these models is not easily intelligible;
tools are needed to make this information
comprehensible. The availability of shells for
performing inferences over Bayesian network models
[6,7] and the recent development of explanation
generation algorithms [8,9] have made building such
a tool possible.

This report presents BANTER (Bayesian Network
Tutoring and Explanation), a generic Bayesian-
network shell that provides decision support and
tutors users in diagnosis and in selection of optimal
diagnostic procedures. BANTER can be used with
any Bayesian network containing nodes that can be
classified as hypotheses, observations, and diagnostic
procedures. The system is designed so that the user
need know nothing about Bayesian networks in order
to interact with it effectively. In fact, none of the
system's dialogs with the user indicates that the
system is using a Bayesian network to perform its

reasoning. The user needs only some knowledge of
the particular domain and an elementary
understanding of probability.

BANTER computes the posterior probability of a
diagnosis, determines the best diagnostic procedure to
affirm ("rule in") or exclude ("rule out") a diagnosis,
quizzes the user on the selection of optimal
diagnostic procedures, and generates explanations of
its reasoning. It can generate story problems and quiz
the user on diagnoses and selection of optimal
diagnostic procedures. Almost all of the system's
reasoning is driven by the Bayesian network
knowledge base; setting up the system for a new
network requires minimal effort.

METHODS

System Environment
BANTER is implemented in C* and runs on top of
the HUGIN Bayesian network inference system [6].
HUGIN performs all probability computations using
a belief network specified in HUGIN's network
definition format. The HUGIN interface consists of a
set of functions from the HUGIN libraries, which are
used to load and compile a belief network, instantiate
and uninstantiate nodes, propagate changes in
individual nodes throughout the network, and obtain
probability values for nodes. BANTER's graphical
interface is written using the Xaw graphics tool kit of
the XII public-domain windowing package; the
widespread popularity of this package makes the
interface highly portable.

System Configuration
BANTER is easily configured for new networks. To
set up a new network model, BANTER requires a
HUGIN network definition file, a BANTER
definition file, and a story template file. For medical
models, the BANTER definition file contains a list of
nodes grouped as HISTORY, PHYSICAL FINDINGS,

* The software is available atftp/fftp.cs.uwm.edu/pub
ItechreportslailBANTER.tar.Z.
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DISEASES, and DIAGNOSTIC PROCEDURES. Each node
is of the type FLOAT, INTEGER, STRING, or BOOLEAN.

Generating Tutorial Problems
The story template file is used to create the text for
randomly generated story problems. The system
generates a story problem by randomly choosing a set
of values for the patient history and physical findings,
randomly choosing a disease of interest, and
expressing these choices by instantiating the story
template. The template contains the following types
of directives:

{label: textj:text2: ... :textn+l }
Print the text for the corresponding state of node
label: textj corresponds to the first state (as listed
in the HUGIN definition file), text2 for the second,
and text,+l for the UNKNOWN state. A percent
sign ("%") in the text stream indicates where the
node's value will be inserted; for nodes of type
FLOAT, one can specify the number of printed
digits (e.g., "t%.%%").

<BOOLEAN:textu :text2>
Pick a random boolean value, and print textj if
TRUE or text2 if FALSE.

[class]
Print the names of nodes of the specified class
(for medical models: HISTORY, PHYSICAL-
FINDINGS, or DISEASES), excluding those that have
been selected already. If a node is BOOLEAN, its
name will be included only if its current state is
TRUE. For nodes of other types, the name and
value will be displayed.

(class)
Print the names of nodes of the specified class,
excluding those that have been selected already.
If a node is of type BOOLEAN, its name will be
included only if its current state is FALSE. For
nodes of other types, the name and value will be
displayed.

Determining the Best Test
The best test to rule in or rule out a hypothesis is
determined by positively and negatively instantiating
each test outcome and determining the posterior
probability of the hypothesis given the test outcome
and the patient's history and physical findings. The
best test to rule in the hypothesis is the one that
results in the highest post-test probability and the best
test to rule out the hypothesis is the one that results in
the lowest post-test probability.

Generating Explanations
Following Suermondt's INSITE method [8],
BANTER generates explanations in two steps. The
first step identifies the evidence that has the most
influence on the given hypothesis. The second step
identifies the strongest and most comprehensible
paths linking the influential evidence with the
hypothesis. Both algorithms are used to explain the
current belief in a disease: we first identify those
nodes among the specified history and physical
findings that were most influential in producing the
reported posterior probability of the disease and then
find the paths along which that influence flows. To
explain the selection of the best test, only the second
algorithm is used: here we only need to find the
paths of influence from each test outcome to the
disease.

Identifying Influential Evidence. To identify the
most influential pieces of evidence, we first
determine the influence of each evidence node on a
hypothesis by performing a sensitivity analysis. We
remove all evidence from the network and then
instantiate each evidence node individually and
record the posterior probability of the hypothesis.
We then filter out all evidence nodes that do not
influence the hypothesis in the direction of its
posterior probability given all the evidence. For the
remaining nodes, the posterior probabilities are then
normalized so that they fully span the range 0 to 1;
call this the importance of each node. We define
important nodes to be ones with an importance value
greater than some threshold. The threshold is
selectable by the user and is currently set to 0.7. We
normalize the posterior probabilities since we are
interested in identifying pieces of evidence with
relatively strong influence on the probability of the
hypothesis. This is not determined by the absolute
value of the posterior probability but rather by the
value relative to the prior probability of the
hypothesis and the posteriors for the other pieces of
evidence.

Our algorithm differs from that of Suermondt [8].
Rather than instantiating each piece of evidence
individually, Suermondt removes each piece of
evidence individually and computes the posterior
probability of the hypothesis without that piece of
evidence. An influential piece of evidence is one for
which the posterior probability without the evidence
is significantly lower than with the evidence. While
our approach will identify each piece of evidence that
is individually significant, Suermondt's approach will
not flag a piece of evidence as significant if it does
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Figure 1. Bayesian network model of gallbladder
disease. (The vertical bar simplifies the illustration:

all input nodes influence all output nodes.)

not increase the probability of the hypothesis in the
presence of other pieces of evidence. For example, if
two pieces of evidence each raise the probability of
the hypothesis to one, neither will be flagged as
significant since when each is removed the
probability of the hypothesis is still one. Suermondt
further discusses using his technique on all possible
subsets of the set of evidence in order to identify sets
of evidence that may be collectively significant but

Identifying Paths of Influence. To determine the
paths along which an evidence node influences a
hypothesis node, we first identify all paths along
which evidence can flow based on d-separation [10].
This set often will be too large for meaningful
explanation, so we limit the explanation to five paths,
ranked by strength and length. Our foremost
objective is to tell the user how the evidence
influences the hypothesis. For the explanation to be
accurate, BANTER needs to identify the strongest
paths; for it to be concise, we choose the shortest
paths among those that are equally strong. The
method of identifying paths of influence is described
in greater detail elsewhere [11].

RESULTS

We applied BANTER to a Bayesian network model
of acute gallbladder disease (Figure 1) [5]. The two
principal diagnoses are gallstones and cholecystitis;
appendicitis, gastroenteritis, small bowel obstruction,
and abdominal pain of unknown cause serve as
alternative diagnoses. The remaining nodes represent
a patient's history, physical findings, and test results.
Using the story template file (Figure 2), BANTER
generates a story problem (Figure 3).

Querying the Knowledge Base
The user queries the knowledge base by setting up a
scenario. A scenario is created by specifying a set of
known values for the history and physical findings, as
well as a set of diseases of interest. This is done by
clicking on nodes in windows displaying for history,
physical findings, and diseases of interest. The user
now can ask the system to compute the posterior
probability of the selected diseases or to determine
the best tests to rule in and rule out the selected

{SEX:Mr. Jones:Mrs. Jones:The patient)
{AGE:is % years old, and) presents with [HISTORY], and denies (HISTORY).
{SEX:His:Her:The patient's} {TEMPERATURE:temperature is %.%.}
{SEX:His:Her:The patient's) {WBC-COUNT:WBC count is %.%.}
Physical examination reveals [PHYSICAL-FINDINGS], and no evidence of (PHYSICAL-FINDINGS).
What is the best test to <BOOLEAN:rule in:rule out> [DISEASE]?

Figure 2. Story template for gallbladder-disease model.

Mrs. Jones is 41 years old, and presents with ANOREXIA, and denies VOMITING, DIARRHEA,
OBSTIPATION, SIMILAR-SX-PREVIOUSLY. Her WBC count is 12.6. Physical examination reveals
GUARDING, and no evidence of RIGIDITY, REBOUND-TENDERNESS, ABNORMAL-BOWEL-SOUNDS.

What is the best test to rule out GALLSTONES?

Figure 3. Story problem generated by BANTER.
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DISCUSSION

Requesting an Explanation
The user can obtain an explanation of the reasoning
that lead the system to select these tests (Figure 4).
The system starts by explaining how the known
history and physical findings influence the
probability of gallstones. Having explained how the
pretest probability of gallstones was arrived at, the
system continues by explaining each possible test
further influences the probability of gallstones.

Quizzing the User
In addition to asking the system to perform
computations, the user can ask to be quizzed in the
selection of optimal diagnostic procedures. This can

be done in two ways. The user can specify a scenario
and choose the test he or she thinks best to rule in or
rule out the selected disease. If an answer is
incorrect, the system tells the user which tests are

preferable to the one selected and can explain its
reasoning. The second way the user can be quizzed is
by selecting the "sstory" action. In this mode, the
system randomly selects a patient history, a set of
physical findings, and a disease of interest, and
presents the scenario to the user in English (Figure 3).
The user can select an answer from the quiz menu

and continue as described above.

BANTER transforms the information contained in a

Bayesian network into an easily intelligible form for
medical education and clinical decision support.
BANTER quizzes and tutors users on the evaluation
of diagnoses and optimal selection of diagnostic
procedures. Since almost all the system's reasoning
is performed using the Bayesian network knowledge
base, configuring the system to work with a given
network requires little effort. On the other hand,
since nothing in the system's functionality indicates
that it is using a Bayesian network for its reasoning,
the complex details of the representation are hidden
from the user.

Future research will focus on (1) explanations in
extremely large networks, (2) more informative
explanations, and (3) rigorous evaluation. In the
newly emerging models that contain thousands of
nodes, inference will become too slow to provide
acceptable interaction and the explanations produced
by the current algorithm will become too lengthy.
For a given problem, typically only a portion of a
given network model will be relevant. We have
developed a technique for specifying a Bayesian
network as a collection of rules in probability logic
and generating that portion of the network relevant to
a given computation (12]. Integrating this technique

Figure 4. Explanations generated by BANTER.
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Before presenting any evidence, the probability of GALLSTONES being present is 0.128.
The following pieces of evidence are considered 'important' (in order of importance):

Presence of GUARDING results in a post-test probability of 0.175 on GALLSTONES.
AGE of 41 results in a post-test probability of 0.172 on GALLSTONES.

Calculating chains. .

Their influence flows along the following paths:
GUARDING is caused by CHOLECYSTITIS, which is caused by GALLSTONES.
AGE influences GALLSTONES.

Presentation of the evidence results in a posterior probability of 0.227 for the presence of
GALLSTONES.

The best tests to rule in GALLSTONES (in order):
A positive CT test results in a probability of 0.987 on GALLSTONES.
A positive ULTRASOUND FOR GALLSTONES test results in a probability of 0.601 on GALLSTONES.
A positive HIDA test results in a probability of 0.406 on GALLSTONES.
A positive ULTRASOUND FOR CHOLECYSTITIS test results in a probability of 0.344 on

GALLSTONES.

Calculating chains.
Their influence flows along the following paths:
GALLSTONES are seen by CT.
GALLSTONES are seen by ULTRASOUND FOR GALLSTONES.
GALLSTONES causes CHOLECYSTITIS, which is detected by HIDA
GALLSTONES causes CHOLECYSTITIS, which causes SONOGRAPHIC MURPHY SIGN, which is detected by

ULTRASOUND FOR CHOLECYSTITIS
GALLSTONES causes CHOLECYSTITIS, which causes ULTRASOUND THICK GB WALL, which is detected

by ULTRASOUND FOR CHOLECYSTITIS

diseases.



into BANTER will significantly reduce the
complexity of inferences in very large networks.

BANTER provides more informative explanations by
associating semantic information with Bayesian
networks. Instead of displaying paths of influence
with arrows, we indicate how each node influences its
successor with terms like "causes" or "detects."
Including abstraction information may make
explanations more informative and more concise.
Rather than explain only the current scenario, one
could explain a more general scenario, of which the
current one is an instance. For example, in the case
of cholecystitis elevating temperature, one could
additionally tell the user that any inflammatory
disease, of which cholecystitis is an instance, has the
tendency to elevate temperature.

We currently are evaluating BANTER's explanatory
content and style in tests with physicians at various
levels of training. In addition to the model of
gallbladder disease described above, we are applying
BANTER to belief-network models for diagnosis of
liver lesions by magnetic resonance imaging [4] and
echocardiographic diagnosis (Diez FJ, personal
communication).

Because of its generality and ease of use, BANTER
can be used in a wide variety of settings where belief
networks models have been formulated. Its ability to
quiz users and provide explanations - without explicit
reference to a belief network model - makes the
system useful for clinical decision support and
medical education.
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